Close
  Indian J Med Microbiol
 

Figure 2: The physiologic compression of the dental pulp. The continuous formation of secondary dentin (1). The formation of a cell-free zone due to the movement of tissue water toward the pressure (2). The compression of the capillaries and development of hypoxia (3). The apoptosis of some odontoblasts due to hypoxia (4). The apoptosis of some fibroblasts due to hypoxia (5). The formation of a collagen fiber network as a result of excluded volume effect (6). The proteoglycans get crowded and trapped within the collagen fiber network and therefore generate an osmotic swelling pressure (7)

Figure 2: The physiologic compression of the dental pulp. The continuous formation of secondary dentin (1). The formation of a cell-free zone due to the movement of tissue water toward the pressure (2). The compression of the capillaries and development of hypoxia (3). The apoptosis of some odontoblasts due to hypoxia (4). The apoptosis of some fibroblasts due to hypoxia (5). The formation of a collagen fiber network as a result of excluded volume effect (6). The proteoglycans get crowded and trapped within the collagen fiber network and therefore generate an osmotic swelling pressure (7)