Search Article 
 
Advanced search 
Official publication of the American Biodontics Society and the Center for Research and Education in Technology
Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login 
ORIGINAL HYPOTHESIS
Year : 2015  |  Volume : 6  |  Issue : 1  |  Page : 10-13

Osterix combined with gene-activated matrix: A potential integrated strategy for achieving cementum regeneration


1 Department of Periodontology, The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) and Key Laboratory for Oral Biomedical Engineering of Ministry of Education; Department of Periodontology, the Affiliated Hospital of Stomatology, College of Medicine, Zhejiang University, Hangzhou, China
2 Department of Periodontology, The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) and Key Laboratory for Oral Biomedical Engineering of Ministry of Education; Department of Periodontology, School and Hospital of Stomatology, Wuhan University, Wuhan, China

Correspondence Address:
Zhengguo Cao
Department of Periodontology, School and Hospital of Stomatology, Wuhan University, Wuhan
China
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/2155-8213.150864

Rights and Permissions

Introduction: Human periodontitis is the most common infectious disease that results in the destruction of periodontal supporting tissues including the root cementum. Currently cementum regeneration, as a vital event, is considered as a gold standard of successful periodontal tissue reconstruction. Nevertheless, one of the important requirements of cementum reestablishment is the recruitment and differentiation of pre-cementoblasts into functional cementoblasts, which requires effective regulator factors. Recently, Osterix (Osx) is known to be a key transcriptional factor essential for osteogenesis and especially for cementogenesis. Although there are various interesting approaches involving tissue engineering, gene-activated matrix (GAM) is one of the most promising approaches to achieve reliable restoration of the periodontium. The Hypothesis: Based on the recent advances in understanding the mechanisms of Osx in cementum development and formation, we hypothesize that Osx plays a critical role in periodontal regeneration and Osx combined with GAM may be an effective strategy for the regeneration of cementum. Evaluation of the Hypothesis: Osx combined with GAM could pave the way for the development of new tissue engineering procedures and have the potential to play a pivotal role in cementum regeneration, eventually increasing the predictability of periodontal tissue regeneration.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed5158    
    Printed270    
    Emailed0    
    PDF Downloaded481    
    Comments [Add]    
    Cited by others 1    

Recommend this journal