Search Article 
Advanced search 
Official publication of the American Biodontics Society and the Center for Research and Education in Technology
Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login 
Year : 2018  |  Volume : 9  |  Issue : 2  |  Page : 45-50

Immunomodulation of Osseointegration Through Extracorporeal Shock Wave Therapy

1 School of Dentistry, Universidad de Concepción, Chile
2 Regenerative Medicine Center, Hospital Clínico de Viña del Mar, Chile
3 School of Dentistry, Universidad Andres Bello; Universidad Autónoma de, Chile

Correspondence Address:
Luis Amengual-Penafiel
Servicio Odontología, Unidad Implantología, Hospital Leonardo Guzmán Antofagasta. Azapa #5935, Antofagasta
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/denthyp.denthyp_4_18

Rights and Permissions

Introduction: Dental implants are a routine procedure within the therapeutic range of dentists. Many loading protocols are based on techniques and biological times that consider the biology of the host bed. However, early or late complications may occur, such as lack of osseointegration, peri-implantitis, and marginal bone loss. Nowadays, treatments for total or partial failure in osseointegration are often complex and unpredictable. It has recently been postulated that osseointegration is rather an immunomodulated event, which is the result of an equilibrium response to a foreign body reaction. Given this new evidence, there is a need to develop new therapeutic protocols and approaches to improve osseointegration and the prognosis of implant treatments. Hypothesis: Human bone marrow-derived mesenchymal stem cells (HBMMSC), resident in the maxillary and mandibular bones, immunomodulate osseointegration through the bioactivating effect of extracorporeal shock waves therapy (ESWT). Evaluation of the Hypothesis: Local immunomodulation is currently considered one of the main functions of mesenchymal stem cells to maintain tissue homeostasis, and it has been demonstrated that ESWT manages to stimulate the activity of HBMMSC. Clinical and experimental reports demonstrate the therapeutic potential of ESWT in medicine and dentistry. Conclusion: ESWT medical devices could become a new therapeutic strategy to immunomodulate osseointegration. The bioactivating effect of ESWT on resident HBMMSC can have the potential of guiding the tissue response to a more favorable outcome, with the objective of improving clinical success and decreasing the complications of dental implant treatments.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded631    
    Comments [Add]    
    Cited by others 5    

Recommend this journal